

Chapter 5 Elasticity and Its Applications, p. 81

Outline:

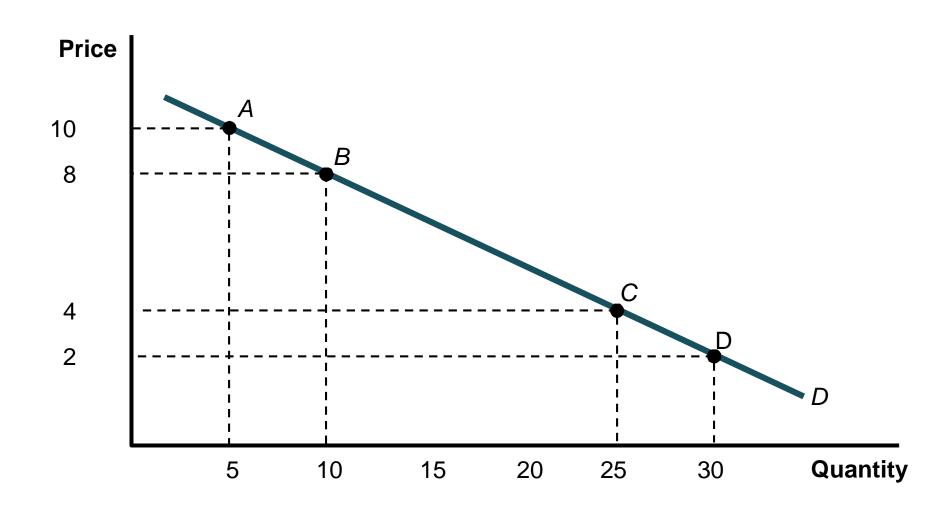
- I. Price Elasticity of Demand
- **II.** Price Elasticity of Demand Graphically
- III. Determinants of Price Elasticity of Demand
- **IV. Elasticity and Total Revenue**
- V. Elasticity of Supply
- VI. Elasticity of Supply Graphically
- VII. Determinants of Elasticity of Supply
- VIII. Income Elasticity
- IX. Cross-Price Elasticity of Demand
- X. Applications

Price elasticity of demand

– a measure that indicates
the degree of consumer
response to a price
change.

(% change in quantity)
(% change in price)

Who cares?


p.81

Midpoint Formula - Price elasticity of Demand

$$E_d = rac{\Delta Q}{\% \Delta Q} = rac{Q_1 - Q_o}{(Q_o + Q_1)} = rac{Q_1 - Q_o}{(Q_o + Q_1)} = rac{Q_1 - Q_o}{P_1 - P_o} = rac{(Q_o + Q_1)}{(P_o + P_1)}$$

Note that the formula in the text has a 1/2 in the denominator and in the numerator. I don't include the 1/2 in the formula I give you because it cancels our anyway.

Calculating Price Elasticity of Demand, p. 82

example: Calculating E_d from point A to B

$$P_0=10$$
, $P_1=8$, $Q_0=5$, $Q_1=10$

$$E_d = \frac{\frac{10-5}{5+10}}{\frac{8-10}{10+8}} = \frac{\frac{5}{15}}{\frac{-2}{18}} = -(\frac{5}{15})(\frac{18}{2}) = (-\frac{1}{3})9 = -3$$

example: Calculating E_d from C to D

$$P_0=4$$
, $P_1=2$, $Q_0=25$, $Q_1=30$

$$E_d = \frac{\frac{30 - 25}{25 + 30}}{\frac{2 - 4}{4 + 2}} = \frac{\frac{5}{55}}{\frac{-2}{6}} = -(\frac{5}{55})(\frac{6}{2}) = (-\frac{1}{11})3 = -\frac{3}{11}$$

How to interpret the elasticity coefficient:, p.82

- if | Ed | > 1 demand is elastic | %ΔQ | > 1
 | %ΔP | or | %ΔQ | > | %ΔP |
- if |Ed| < 1 demand is inelastic $|\%\Delta Q| < 1$ $|\%\Delta P|$ or $|\%\Delta Q| < |\%\Delta P|$ Does not imply that $\Delta Q = 0$
- if |Ed| = 1 demand is unitary elastic $|\%\Delta Q| = 1$ $|\%\Delta P|$ or $|\%\Delta Q| = |\%\Delta P|$

ICLICKER – REEF POLLING

In general, the greater the price elasticity of demand,

a. the smaller the responsiveness of price to changes in quantity.

b. the smaller the responsiveness of quantity to changes in price.

c. the larger the responsiveness of price to changes in quantity.

d. the larger the responsiveness of quantity to changes in price.

ICLICKER – REEF POLLING

Suppose that when the average price of a pack of cigarettes in Lexington falls from \$4.00 to \$3.00, the consumption cigarettes rises from 8,000 to 10,000 packs sold per week. What is the price elasticity of demand?

A. -9/7

B. -7/9

C. -1/9

D. -1/7

2) Suppose that when the average price of a pack

of cigarettes in Lexington falls from \$4.00 to \$3.00, the consumption cigarettes rises from 8,000 to 10,000 packs sold per week

$$P_0 = \$4 \text{ and } P_1 = \$3$$

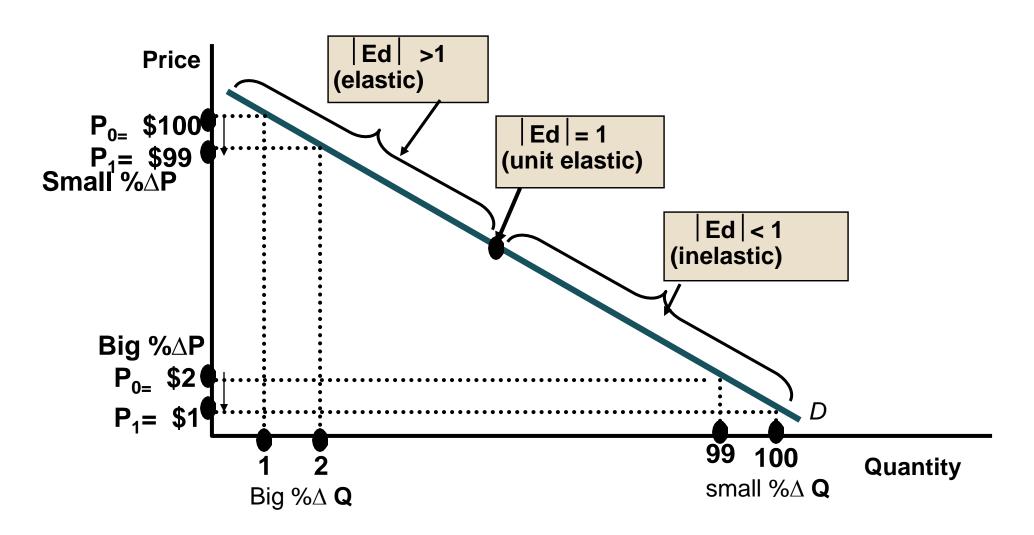
$$Q_0 = 8,000$$
 and $Q_1 = 10,000$

$$E_d = (10,000-8,000)/18,000 = (3-4)/7$$

$$E_d = 1/9 = (1/9)(-7/1) = -7/9$$
-1/7

ICLICKER – REEF POLLING

Given that the measure for Ed in the previous question was – (7/9) this implies that the response to the price change was

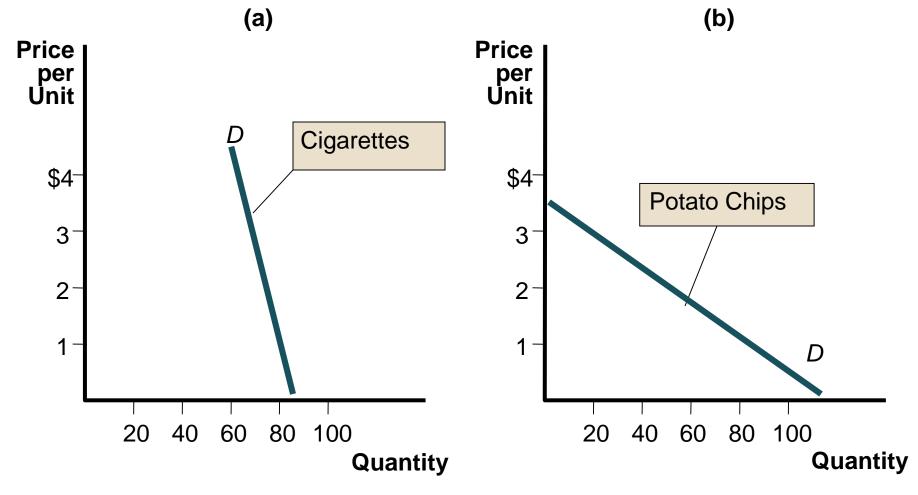

A. Elastic

B. Inelastic

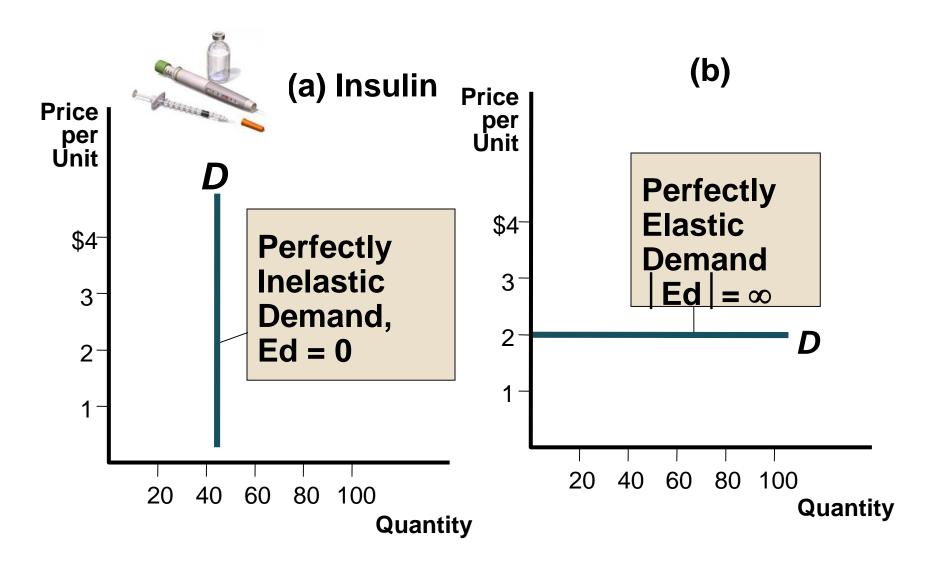
C. Unit Elastic

II. Price Elasticity of Demand Graphically, p.84 Elasticity and Straight-Line Demand Curves

Demand is elastic on the upper region of the demand curve because, numerically, % changes in Q are relatively large while % P changes are relatively small.



Slope and elasticity are not the same thing (two different numbers)


BUT

Comparing relative slopes of two demand curves allows you to compare elasticity

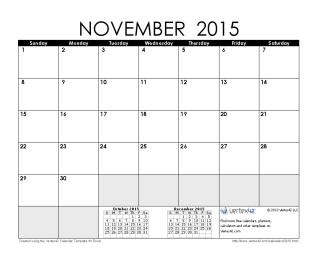
Question: Which is more elastic, the demand for cigarettes or the demand for potato chips? P.84

Extreme Cases of Demand, p. 85

III. Determinants of Price Elasticity of Demand, p. 86

1) The availability of substitutes
As # of available substitutes rises,
demand becomes more elastic, (and vice versa)

2) The more the good is a necessity (rather than a luxury), the more inelastic demand will be.



RELATIVELY ELASTIC

3) Time Horizon: The more time buyers have to adjust to a price change, the more elastic the demand for a good becomes

	2013	
JANUARY	FEBRUARY	MARCH
Mo Tu We Th Fr Sa Su	Mo Tu We Th Fr Sa Su	Mo Tu We Th Fr Sa Su
1 2 3 4	1	30 31 1
5 6 7 8 9 10 11	2 3 4 5 6 7 8	2 3 4 5 6 7 8
2 13 14 15 16 17 18	9 10 11 12 13 14 15	9 10 11 12 13 14 15
9 20 21 22 23 24 25	16 17 18 19 20 21 22	16 17 18 19 20 21 22
26 27 28 29 30 31	23 24 25 26 27 28	23 24 25 26 27 28 29
APRIL	MAY	JUNE
do Tu We Th Fr Sa Su	Mo Tu We Th Fr Sa Su	Mo Tu We Th Fr Sa Su
1 2 3 4 5	1 2 3	1 2 3 4 5 6 7
6 7 8 9 10 11 12	4 5 6 7 8 9 10	8 9 10 11 12 13 14
13 14 15 16 17 18 19	11 12 13 14 15 16 17	15 16 17 18 19 20 21
20 21 22 23 24 25 26	18 19 20 21 22 23 24	22 23 24 25 26 27 28
7 28 29 30	25 26 27 28 29 30 31	29 30
JULY	AUGUST	SEPTEMBER
Mo Tu We Th Fr Sa Su	Mo Tu We Th Fr Sa Su	Mo Tu We Th Fr Sa Su
1 2 3 4 5	31 1 2	1 2 3 4 5 6
5 7 8 9 10 11 12	3 4 5 6 7 8 9	7 8 9 10 11 12 13
3 14 15 16 17 18 19	10 11 12 13 14 15 16	14 15 16 17 18 19 20
20 21 22 23 24 25 26	17 18 19 20 21 22 23	21 22 23 24 25 26 27
27 28 29 30 31	24 25 26 27 28 29 30	28 29 30
OCTOBER	NOVEMBER	DECEMBER
Mo Tu We Th Fr Sa Su	Mo Tu We Th Fr Sa Su	Mo Tu We Th Fr Sa Su
1 2 3 4	30 1	1 2 3 4 5 6
5 6 7 8 9 10 11	2 3 4 5 6 7 8	7 8 9 10 11 12 13
12 13 14 15 16 17 18	9 10 11 12 13 14 15	14 15 16 17 18 19 20
19 20 21 22 23 24 25	16 17 18 19 20 21 22	21 22 23 24 25 26 27
26 27 28 29 30 31	23 24 25 26 27 28 29	28 29 30 31
	NYCDesign.co	

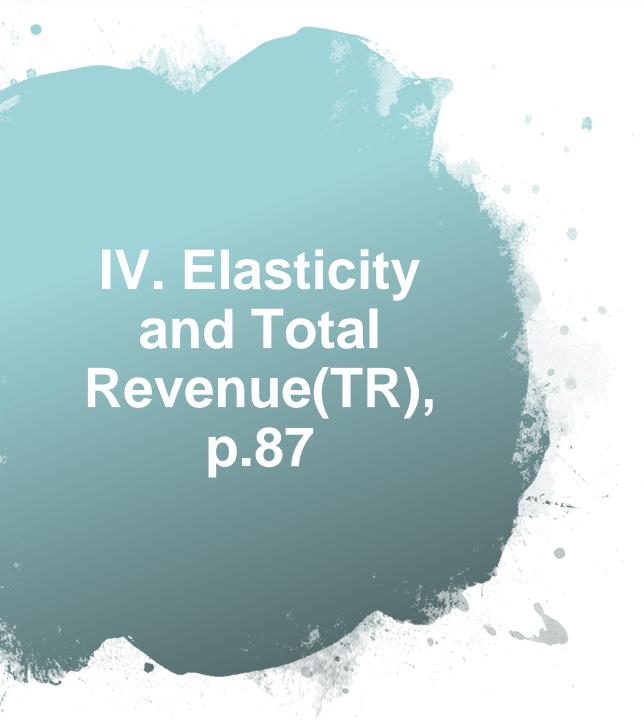
2015

LESS ELASTIC

MORE ELASTIC

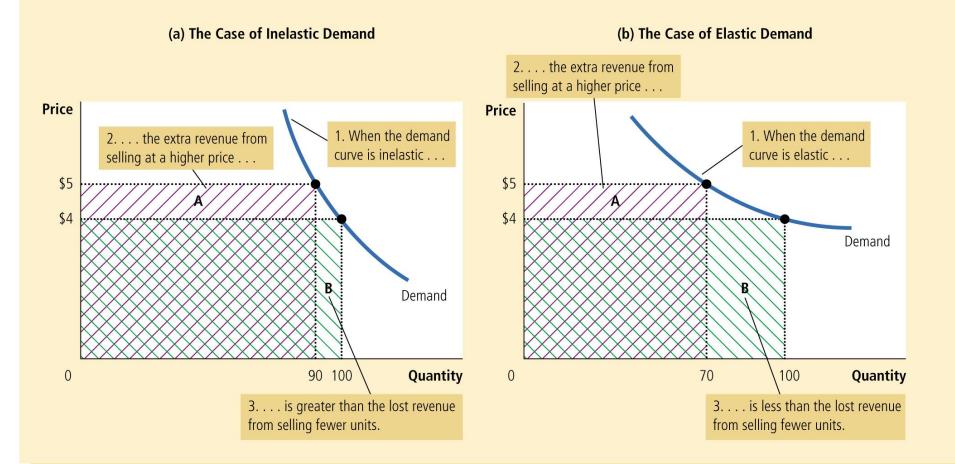
EVEN MORE ELASTIC

4) Definition of the Market: The more specific the classification for a good, the more elastic the demand is.


MORE ELASTIC

Region 13 Champs

Multi-tiered pricing:
Producers charge different groups of consumers different prices



- Also called TOTAL EXPENDITURES
- TR = (price)X(quantity)
- Law of Demand
- As the price changes, the effect on total revenue depends upon the elasticity of demand.

The impact of a price change on total revenue (the product of price and quantity) depends on the elasticity of demand. In panel (a), the demand curve is inelastic. In this case, an increase in the price leads to a decrease in quantity demanded that is proportionately smaller, so total revenue increases. Here an increase in the price from \$4 to \$5 causes the quantity demanded to fall from 100 to 90. Total revenue rises from \$400 to \$450. In panel (b), the demand curve is elastic. In this case, an increase in the price leads to a decrease in quantity demanded that is proportionately larger, so total revenue decreases. Here an increase in the price from \$4 to \$5 causes the quantity demanded to fall from 100 to 70. Total revenue falls from \$400 to \$350.

FIGURE 3

How Total Revenue Changes When Price Changes

Relationship
Between
Elasticity (E_D)
and Total
Revenue, p. 88

- If Ed > 1 (elastic) as P increase TR decreases, as P falls, TR increases
 (|%ΔQ|> |%ΔP|)
- If |Ed| < 1 (inelastic) as P increases TR increases, as P falls, TR decreases
- $(|\%\Delta Q| < |\%\Delta P|)$
- If |Ed| = 1 (unitary elasticity) as P changes TR remains the same
 |%ΔQ| = |%ΔP|

ICLICKER – REEF POLLING

Suppose that President Capiluto says he plans to raise tuition next year by 2% to generate more revenue. What is he assuming about the student price elasticity of demand for attending the university?

A.
$$|E_D| > 1$$

B.
$$|E_D| < 1$$

C.
$$|E_D| = 1$$

D.
$$|E_D| = \infty$$